

Data Harmonization in Organ Transplantation

S. Amir Tabatabaei H.

New Tools for Data Harmonization and Their Potential Applications in Organ Transplantation

Journal of Transplantation, 19 Mar 2024

1. Introduction

- > Understanding the data harmonization
- > Why do we need data harmonization?
- Global initiatives in data harmonization
- > Initiatives in Organ Transplantation

2. Challenges in Harmonizing Organ Transplant Data

3. Future Perspectives

What is data harmonization?

- Definition: Data harmonization is the process of merging data from various sources and standardizing it into a single format.
- Similar terms:
 - Record Linkage : Integrating datasets using a unique identifier
 - > Data Warehousing : Storing data from multiple sources in a centralized location
 - > Data Standardization : Converting various units of data into a common framework
 - Data Integration : Combining data from different sources to provide a unified view
 - etc.
- Prospective vs. Retrospective Harmonization: Setting up studies for consistency vs. standardizing data after collection.

Why do we need data harmonization?

- Standardizing Data Across Regions and Systems: To ensure that all parties use a standardized format for recording and sharing data.
- Enhancing Decision-Making: Standardized, high-quality data aids in informed decision-making for patient care, organ allocation, and transplant outcomes.
- Facilitating Collaborative Research and Innovation: Harmonized data enables comprehensive analyses, supporting research efforts to improve transplant protocols and longterm outcomes.

Global initiatives in data harmonization

- Standardization Initiatives: Various projects and tools exist to standardize terminology and integrate healthcare data globally.
 - ICD (International Classification of Diseases)
 - SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)
 - LOINC (Logical Observation Identifiers Names and Codes) in the US
 - dm+d (<u>d</u>ictionary of <u>m</u>edicines and <u>d</u>evices) in UK
 - > AMT (Australian Medicines Terminology) in Australia
- Projects for Integrating Healthcare Data: Examples include initiatives like HMORN, European platform of EHR4CR, and i2b2-TranSMART.
- Common Data Models: Initiatives like OMOP and PCORNet focus on standardizing healthcare data for broader usage.

Data Harmonization Initiatives in Organ Transplantation

- Current Initiatives: Registries and initiatives dedicated to harmonizing organ transplant data
 - CTS (Collaborative Transplant Study)
 - **SRTR** (Scientific Registry of Transplant Recipients)
 - > ANZDATA (Australia and New Zealand Dialysis and Transplant Registry)
 - > **OPTN** (Organ Procurement and Transplantation Network)

Harmonization Efforts for Registries

- Transplantation Society's Global Data Harmonization Committee (TTS-GDHC):
 - Development of common data standards
 - Standardization of data elements and terminology
 - Facilitation of inter-registry data linkage
 - Promotion of data sharing policies
 - Collaboration with relevant organizations and stakeholders
- CDISC Therapeutic Area User Guide-Kidney Transplantation (TAUG-KT):
 - Includes disease-specific metadata and guidance on implementing CDISC standards for various purposes such as data collection, analysis, and reporting

Challenges in Harmonizing Organ Transplant Data

I. Inadequate Representation of Transplantation-Specific Concepts

- IRD (Infectious Risk Donor)
- KDRI (Kidney Donor Risk Index)
- **KDPI** (Kidney Donor Profile Index)
- **ECD** (Expanded Criteria Donor)

- > HLA (Human Leukocyte Antigen) mismatch
- MELD (Model for End-Stage Liver Disease)
- LYFT (Life Years from Transplant)
- etc.

- Visits at varying time points after transplant
- Frequently record free-text observations in different languages
- Rarely utilize structured data formats.

Challenges in Harmonizing Organ Transplant Data

II. Institutional and Administrative Barriers

- Conflicting institutional policies
- Varying data privacy rules

- Variability in health system operations over time due to technological advancements
- Diversity in treatment and allocation policies across regions

At the international level:

 Differences in countries' approaches to health data security and patient privacy further complicate harmonization efforts

Challenges in Harmonizing Organ Transplant Data

III. Inconsistent and Insufficient Granularity

Aspect	Noting General Information	Noting Specific Details
Age Recording	Age range (45-55 years old)	Birthdate or specific age (48 years old)
Organ Rejection	Binary outcome (yes/no)	Severity score (e.g., mild, moderate, severe)
Medication Usage	Absence/Presence	Dosage (e.g., 100 mg), frequency (e.g., twice daily), duration (e.g., 6 months)
Post-Transplant Complications	Absence/Presence	Severity scale (e.g., mild, moderate, severe), Impact on patient outcomes (e.g., hospital readmission, prolonged recovery)
Transplant Outcomes	Successful or failed	Graft function (e.g., creatinine levels, eGFR), Patient- reported outcomes (e.g., quality of life, satisfaction with transplant outcome)

Future Perspectives

Implementation of Privacy Preserving Frameworks

- Utilizing methods, such as SMPC (Secure Multi-Party Computation) and cryptographic protocols, to perform analyses on encrypted or aggregated data
- DataSHIELD
- Differential Privacy
- **TEEs** (Trusted Execution Environment)
- Secure Data Enclaves

Future Perspectives

Implementation of AI-Based Federated Learning

Federated learning enables training of machine learning models on decentralized data sources

Future Perspectives

Development of a Common Image Data Model (CIDM)

To define consistent image formats, metadata standards, and quality control measures

For joining my LinkedIn account and visiting our website scan the QR code

