

9. Nacional

Congress of Turkish Transplantation Immunology and Genetics Society

18-21 April 2024

Next-Gen ABMR Diagnostics: Unveiling the Potential of cfDNA

Medhat Askar, MD, PhD, MSHPE

Associate Vice President for Clinical Affairs, Qatar University

Professor of Immunology, College of Medicine, Qatar University

Division Head, Clinical Immunology, Hamad Medical Corporation

Clinical Professor, Department of Medical Education, Texas A&M College of Medicine

Director of Clinical Services, Be The Match / National Marrow Donor Program (NMDP)

╶┑╒┶┊╪┿╼╶┰╾┝┓╒┶┊╪┿╼╌┎╾╞┪╒╅╬╬╼╌┎╾╞┩╒╅╬╬┓╌┎╾╞┥╒╅╬╬┑╌┎╴

Outline

- A glance at some modalities of transplant management and risk stratification tools
- Emerging modalities in diagnosis of antibody mediated allograft rejection
 - Intragraft transcription profile
 - Peripheral blood transcription profiles
 - Donor derived cell free DNA (ddcfDNA)

A glance at the present

ORIGINAL ARTICLE 🔂 Full Access

A 2020 Banff Antibody Mediated Injury Working Group examination of international practices for diagnosing antibody mediated rejection in kidney transplantation

Carrie A. Schinstock , Medhat Askar, Serena M. Bagnasco, Ibrahim Batal, Laurine Bow, Klemens Budde, Patricia Campbell, Robert Carroll ... See all authors v

First published: 10 January 2021 | https://doi-org.srv-proxy2.library.tamu.edu/10.1111/tri.13813

Texas A&M

Figure 4. Limitations of the current ABMR Banff Classification

A Glance At The Present

- There is unmet need in transplantation to create an objective diagnostic test for all forms of allograft rejection
- The pathology of rejection are not consistent
- Nonetheless, genomic based detection of rejection is promising tool

Intragraft Transcription Profiles (Transcriptome)

Received: 13 September 2017
Revised: 31 October 2017
Accepted: 17 November 2017

DOI: 10.1111/ajt.14600
Image: Control of the second secon

AJ

MINIREVIEW

Review: The transcripts associated with organ allograft rejection

Philip F. Halloran^{1,2} | Jeffery M. Venner¹ | Katelynn S. Madill-Thomsen^{1,2} | Gunilla Einecke³ | Michael D. Parkes¹ | Luis G. Hidalgo⁴ | Konrad S. Famulski^{1,4}

Rejection phenotype ^{9, D} (six scores, R1-R6, adding up to 1.0)	R1 Non-rejecting	0.01	All ABMR (Sum of R4, R5, and R6)	0.16
	R2 TCMR	0.75	R4 Early-Stage ABMR (EABMR)	0.14
	R3 Mixed Rejection	0.08	R5 Fully-Developed ABMR (FABMR)	0.00
			R6 Late-Stage ABMR (LABMR)	0.02

Rejection phenotype ^{9, D} (six scores, R1-R6, adding up to 1.0)	R1 Non-rejecting	0.00	All ABMR (Sum of R4, R5, and R6)	1.00
	R2 TCMR	0.00	R4 Early-Stage ABMR (EABMR)	0.59
	R3 Mixed Rejection	0.00	R5 Fully-Developed ABMR (FABMR)	0.41
			R6 Late-Stage ABMR (LABMR)	0.00

The Journal of Heart and Lung Transpla<mark>ntation</mark>

http://www.jhltonline.org

Building a tissue-based molecular diagnostic system in heart transplant rejection: The heart Molecular Microscope Diagnostic (MMDx) System

Philip F. Halloran, MD, PhD,^{a,b} Luciano Potena, MD, PhD,^c Jean-Paul Duong Van Huyen, MD,^d Patrick Bruneval, MD,^{d,e} Ornella Leone, MD,^c Daniel H. Kim, MD,^f Xavier Jouven, MD,^{d,g} Jeff Reeve, PhD,^h and Alexandre Loupy, MD, PhD^d

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

FEATURED PAPERS

Molecular assessment of rejection and injury in lung transplant biopsies

Kieran M. Halloran, MD, MSc,^a Michael D. Parkes, MSc,^b Jessica Chang, BSc,^b Irina L. Timofte, MD,^c Gregory I. Snell, MD,^d Glen P. Westall, MD, PhD,^d Ramsey Hachem, MD,^e Daniel Kreisel, MD, PhD,^e Elbert Trulock, MD,^e Antoine Roux, MD, PhD,^f Stephen Juvet, MD, PhD,^g Shaf Keshavjee, MD, MSc,^g Peter Jaksch, MD,^h Walter Klepetko, MD,^h and Philip F. Halloran, MD, PhD^{a,b}

Received: 24 November 2019 Revised: 7 February 2020 Accepted: 9 February 2020

DOI: 10.1111/ajt.15828

8

ORIGINAL ARTICLE

The molecular diagnosis of rejection in liver transplant biopsies: First results of the INTERLIVER study

Check for

updates

AJT

Katelynn Madill-Thomsen¹ | Marwan Abouljoud² | Chandra Bhati³ | Michał Ciszek⁴ | Magdalena Durlik⁵ | Sandy Feng⁶ | Bartosz Foroncewicz⁴ | Iman Francis² | Michał Grąt⁷ | Krzysztof Jurczyk⁸ | Goran Klintmalm⁹ | Maciej Krasnodębski⁷ | Geoff McCaughan¹⁰ | Rosa Miquel¹¹ | Aldo Montano-Loza¹² | Dilip Moonka² | Krzysztof Mucha⁴ | Marek Myślak¹³ | Leszek Pączek⁴ | Agnieszka Perkowska-Ptasińska⁵ | Grzegorz Piecha¹⁴ | Trevor Reichman³ | | Alberto Sanchez-Fueyo¹¹ | Olga Tronina⁵ | Marta Wawrzynowicz-Syczewska⁸ | Andrzej Więcek¹⁴ | Krzysztof Zieniewicz⁷ | Philip F. Halloran^{1,12} | |

Peripheral Blood Transcriptome

PB Transcriptome

PB Transcriptome

AJT

ORIGINAL ARTICLE

Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant

John J. Friedewald¹ | Sunil M. Kurian² | Raymond L. Heilman³ | Thomas C. Whisenant⁴ | Emilio D. Poggio⁵ | Christopher Marsh² | Prabhakar Baliga⁶ | Jonah Odim⁷ | Merideth M. Brown⁷ | David N. Ikle⁸ | Brian D. Armstrong⁸ | jane I. charette¹ | Susan S. Brietigam¹ | Nedjema Sustento-Reodica¹ | Lihui Zhao¹ | Manoj Kandpal¹ | Daniel R. Salomon^{2,†} | Michael M. Abecassis¹ | for the Clinical Trials in Organ Transplantation 08 (CTOT-08)

Avoiding surveillance biopsy: Use of a noninvasive biomarker assay in a real-life scenario

Audrey Ang¹ | Courtney Schieve² | Stanley Rose² | Clifton Kew¹ | M. Roy First² | Roslyn B. Mannon¹

	Previous study (n = 99) [*]	Previous study UAB (n = 25) [*]	Current study (n = 90)
Specificity	74%	57%	78%
Sensitivity	71%	50%	38%
NPV	89%	78%	81%
PPV	48%	28%	35%

Ang et al, 2020

Original Article

Transl Androl Urol 2022;11(10):1399-1409

Identification of a novel peripheral blood signature diagnosing subclinical acute rejection after renal transplantation

Yue Xu^{1,2#}, Hao Zhang^{1,2#}, Di Zhang^{1,2}, Yuxuan Wang^{1,2}, Yicun Wang^{1,2}, Wei Wang^{1,2}, Xiaopeng Hu^{1,2}

		Group	
		subAR	non-subAR
Risk group	High risk	10	11
	Low risk	2	42
	Sensitivity	0.833	
	Specificity		0.792

What is cfDNA? - Circulating free DNA (cfDNA) are degraded DNA

- fragments released to the blood plasma
- cfDNA is used to describe various forms of DNA freely circulating the bloodstream, including tumor DNA (ctDNA) and cell-free fetal DNA (cffDNA) and donor derived DNA (ddcfDNA)

Relevance of elevated cfDNA?

Elevated levels of cfDNA are observed in

- Congenital fetal malformation
- Cancer, especially in advanced disease
- Allograft rejection

cfDNA

De Vlaminck et al, 2014

cfDNA

https://caredx.com/

Next Generation Allograft ABMR Diagnostics

A test to diagnose all forms of allograft antibody mediated rejection (ABMR) that is:

➤ Non-invasive

> Objective

Cost effective

cfDNA As A Liquid Biopsy Strategy

Pelizarro et al, 2021

Liquid vs. Tissue Biopsy

	Tissue Biopsy	Liquid Biopsy
Specimen	Allograft biopsy (invasive)	Peripheral blood (less invasive)
Representation	Sampling error, single (limited number of samples)	On demand
Treatment monitoring	Not possible unless with another biopsy	Real time
Cost	High	Relatively low

Cell-Free DNA and Active Rejection in Kidney Allografts

Roy D. Bloom,* Jonathan S. Bromberg,[†] Emilio D. Poggio,[‡] Suphamai Bunnapradist,[§] Anthony J. Langone,^{||} Puneet Sood,[¶] Arthur J. Matas,** Shikha Mehta,^{††} Roslyn B. Mannon,^{††‡‡} Asif Sharfuddin,^{§§} Bernard Fischbach,^{|||} Mohanram Narayanan,^{¶¶} Stanley C. Jordan,[§]*** David Cohen,^{†††} Matthew R. Weir,^{‡‡‡} David Hiller,^{§§§} Preethi Prasad,^{|||||} Robert N. Woodward,^{¶¶¶} Marica Grskovic,^{¶¶¶} John J. Sninsky,^{¶¶¶} James P. Yee,^{|||||} and Daniel C. Brennan,**** for the Circulating Donor-Derived Cell-Free DNA in Blood for Diagnosing Active Rejection in Kidney Transplant Recipients (DART) Study Investigators

*Department of Medicine, University of Pennsylvania, Perelman School of Medicine and Penn Kidney Pancreas Transplant Program, Philadelphia, Pennsylvania; [†]Department of Surgery and Department of Microbiology and Immunology and ^{‡‡‡}Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; [‡]Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio; [§]Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; ^{II}Department of Medicine, Vanderbilt University Medical Center, and Medical Specialties Clinic, Veteran Affairs Hospital Renal Transplant Program, Nashville, Tennessee; [¶]Thomas Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; **Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota; ^{††}Division of Nephrology, Department of Medicine, and ^{‡‡}Division Transplantation, University of Alabama School of Medicine, Birmingham, Alabama; ^{§§}Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; ^{§§}Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; ^{§§}Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; ^{§§}Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; ^{§§}Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; ^{§§}Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, California; ^{†††}Department of Surgery, Columbia University Medical Center, New York, ^{§§§}Biostatistics, [§]Clinical Research, ^{§††}Division of Nephrology, Inc., Brisbane, California; and ^{****}Washington University School of Medicine, St. Louis

Samples, sorted by dd-cfDNA levels (percentage), increasing from left to right

Bloom et al, 2017

Performance Metric	Performance at 1% Threshold
ROC/AUC	0.74 (95% CI 0.61-8.85)
Sensitivity	85%
Specificity	59%
NPV	84%
PPV	61%

Bloom et al, 2017

Bloom et al, 2017

RESEARCH ARTICLE

GENOMICS

Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection

Iwijn De Vlaminck,^{1,2} Hannah A. Valantine,³ Thomas M. Snyder,^{1,2} Calvin Strehl,³ Garrett Cohen,³ Helen Luikart,³ Norma F. Neff,^{1,2} Jennifer Okamoto,^{1,2} Daniel Bernstein,⁴ Dana Weisshaar,⁵ Stephen R. Quake,^{1,2}* Kiran K. Khush³*

18 June 2014 Vol 6 Issue 241 241ra77

De Vlaminck et al, 2014

Noninvasive monitoring of infection and rejection after lung transplantation

Iwijn De Vlaminck^{a,b,c,1}, Lance Martin^{a,b,c,1}, Michael Kertesz^{a,b,c,2}, Kapil Patel^d, Mark Kowarsky^{a,b,c}, Calvin Strehl^e, Garrett Cohen^e, Helen Luikart^e, Norma F. Neff^{a,b,c}, Jennifer Okamoto^{a,b,c}, Mark R. Nicolls^d, David Cornfield^d, David Weill^d, Hannah Valantine^e, Kiran K. Khush^e, and Stephen R. Quake^{a,b,c,3}

^aDepartment of Bioengineering, Stanford University, Stanford, CA 94305; ^bDepartment of Applied Physics, Stanford University, Stanford, CA 94305; ^cHoward Hughes Medical Institute, Stanford University, Stanford, CA 94305; ^dDivision of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305; and ^eDivision of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305

13336–13341 | PNAS | **October 27, 2015** | vol. 112 | no. 43

De Vlaminck et al, 2015

De Vlaminck et al, 2015

Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: A prospective, observational, multicenter cohort study

Ekkehard Schütz¹, Anna Fischer², Julia Beck¹, Markus Harden³, Martina Koch⁴, Tilo Wuensch⁵, Martin Stockmann⁵, Björn Nashan⁴, Otto Kollmar⁶, Johannes Matthaei², Philipp Kanzow², Philip D. Walson², Jürgen Brockmöller², Michael Oellerich²*

1 Chronix Biomedical, Göttingen, Germany, 2 Department of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany, 3 Department of Medical Statistics, University Medical Center Göttingen, Germany, 4 Department of Hepatobiliary Surgery and Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 5 Department of Surgery, Charité– Universitätsmedizin Berlin, Berlin, Germany, 6 Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Göttingen, Germany

Schütz et al, 2017

Serial perioperative cell-free DNA levels in donors and recipients undergoing living donor liver transplantation

K. Prakash¹, S. Aggarwal², S. Bhardwaj², G. Ramakrishna² and C. K. Pandey¹ (D)

¹Department of Anaesthesiology and Critical Care, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India ²Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India

Acta Anaesthesiologica Scandinavica 61 (2017) 1084–1094

Received: 12 November 2021 Accepted: 5 April 2022

DOI: 10.1002/lt.26479

ORIGINAL ARTICLE

Elevated fractional donor-derived cell-free DNA during subclinical graft injury after liver transplantation

Richard Taubert ¹

Anna K. Baumann¹ | Julia Beck² | Theresa Kirchner¹ | Björn Hartleben³ | Ekkehard Schütz² | Michael Oellerich⁴ | Heiner Wedemeyer¹ | Elmar Jaeckel¹ |

Baumann et al, 2021

Comparison of two donor-derived cell-free DNA tests and a blood gene-expression profile test in heart transplantation

Nicholas Rodgers¹ | Bryn Gerding¹ | Vincenzo Cusi¹ | Florin Vaida² | Yuko Tada¹ | Gerald P. Morris¹ | Eric D. Adler¹ | Josef Stehlik³ | Paul J. Kim¹

Implementation

Human Immunology 82 (2021) 838-849

Research article

A practical guide to chimerism analysis: Review of the literature and testing practices worldwide

Amanda G. Blouin^a, Fei Ye^a, Jenifer Williams^b, Medhat Askar^{a,b,c,*}

^a Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States

^b Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States

^c Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States

Implementation

- Same performance characteristics as NGS based chimerism analysis
- Collection tube to preserve cfDNA integrity (.e.g., Cell-Free DNA BCT STRECK, PAXgene Blood ccfDNA Tube, ...)
- cfDNA extraction to produce enough yield and integrity (e.g., Maxwell[®] RSC ccfDNA LV Plasma Kit)

Implementation

%	V1 + V2	V3+V4
0.5	0.32%	0.52%
1	0.93%	0.98%
2	2.06%	2.33%
5	4.76%	5.40%
10	9.19%	10.12%

Use Case

Transplant International

ORIGINAL ARTICLE

Diagnostic value of donor-derived cell-free DNA to predict antibody-mediated rejection in donor-specific antibody-positive renal allograft recipients

Katharina A. Mayer¹ (D), Konstantin Doberer¹, Amanda Tillgren², Thierry Viard², Susanne Haindl¹, Sebastian Krivanec¹, Roman Reindl-Schwaighofer¹ (D), Michael Eder¹ (D), Farsad Eskandary¹ (D), Silvia Casas², Markus Wahrmann¹, Heinz Regele³ (D) & Georg A. Bohmig¹ (D)

Non-Invasive Testing

- Transplant date: 23/09/2021
- Elevated creatinine: 15/4/2022
- •DSA: 17/4/2022 (DR13: 2000 MFI)
- •cfDNA: 17/4/2022 (4.65%)

Biopsy

Diagnosis:

- Acute T-cell mediated rejection BANFF Grade IB
- Acute antibody mediated rejection (C4d minimally positive)
- No viral inclusions identified (SV-40 negative)

Follow Up Non-Invasive Testing

• DSA: 28/4/2022 (DR13: 1000 MFI)

• cfDNA: 28/4/2022 (0.81%)

DSA+/cfDNA+ vs. DSA+/cfDNA-

Date	Transplant Date	Sample Date	Donor %	DSA (MFI)
Case #1	23-Sep-2021	17-Apr-2022	4.68%	DR13 (2,000)
		28-Apr-2022	0.81%	DR13 (1,000)
Case #2	3-Apr-2022	21-Apr-2022	0.46%	DR53 (2,000)
		16-May-2022	0.15%	DR53 (1,400)
Case #3	4-Apr-2022	21-Apr-2022	0.99%	None
		16-May-2022	0.40%	None

Summary

- Advances in molecular transplant diagnostics are biologically plausible and less subjective
- They offer the promise to standardize diagnosis and treatment of rejection
- They offer a promising non-invasive diagnostic and monitoring tool for early detection of ABMR, monitoring response to treatment as well as distinguishing a population of immune quiescent who may benefit from immunosuppression minimization

Stay Tuned

Thank you

Email: maskar@qu.edu.qa maskar3@nmdp.org