

9. National

Congress of Turkish Transplantation Immunology and Genetics Society

18-21 April 2024

Precision Transplant Immunosuppression: The Coming Age of Pharmacogenomics

Medhat Askar, MD, PhD, MSHPE

Associate Vice President for Clinical Affairs, Qatar University

Professor of Immunology, College of Medicine, Qatar University

Division Head, Clinical Immunology, Hamad Medical Corporation

Clinical Professor, Department of Medical Education, Texas A&M College of Medicine

Director of Clinical Services, Be The Match / National Marrow Donor Program (NMDP)

عاديد بجابج بحاصا حديبة بماعا حديبة وبجاجبه الطعا حديبة وببجابها كالحاصا حبيبة وببدا

Outline

- Pharmacogenomics (PGx) as a tool for precision medicine (PM) in solid organ
- PGx in hematopoietic cell transplantation
- Barriers & strategies in implementing PGx testing

Problem Statement

- Medication efficacy rates vary considerably
- Millions of adverse drug reactions occur in the United States annually

Problem Statement

- In inpatient settings, ADEs:
- Account for an estimated 1 in 3 of all hospital adverse events
- Affect about 2 million hospital stays each year
- Prolong hospital stays by 1.7 to 4.6 days

Office of Disease Prevention and Health Promotion

Problem Statement

- Each year, ADEs in outpatient settings account for:
- Over 3.5 million physician office visits
- An estimated 1 million emergency department visits
- Approximately 125,000 hospital admissions

Office of Disease Prevention and Health Promotion

Consequences

- Frequent dose monitoring and titration for drug with narrow TI
- Iteration among medications
- Significant burdens on the patient, the provider, and the health care system as a whole

The explanatory (old) role of pharmacogenetics:

Daily maintenance dose for drug X

Number of individuals Β

PGx in Solid Organ Tx

http://www.phaeurope.org/

Transplant International

ORIGINAL ARTICLE

Higher calcineurin inhibitor levels predict better kidney graft survival in patients with *de novo* donor-specific anti-HLA antibodies: a cohort study

Marc-Antoine Béland¹, Isabelle Lapointe¹, Réal Noël¹, Isabelle Côté¹, Eric Wagner², Julie Riopel³, Eva Latulippe³, Olivier Désy¹, Stéphanie Béland¹, Ciara N. Magee⁴, Isabelle Houde¹ & Sacha A. De Serres¹ ip

Transplant International 2017; 30: 502–509

Figure 2 Kaplan–Meier plots for graft loss by tertile of mean tacrolimus levels post-dnDSA development. Comparison was assessed using log-rank test. *Béland et al, 2017*

SPECIAL FEATURE

Effect on Kidney Graft Survival of Reducing or Discontinuing Maintenance Immunosuppression After the First Year Posttransplant

Gerhard Opelz and Bernd Döhler

Transplantation • Volume 86, Number 3, August 15, 2008

Years post-transplant

Opelz and Döhler, 2008

Higher Initial Tacrolimus Blood Levels and Concentration-Dose Ratios in Kidney Transplant Recipients Who Develop Diabetes Mellitus

E. Rodrigo, M.A. de Cos, G. Fernández-Fresnedo, B. Sánchez, J.C. Ruiz, C. Piñera, R. Palomar, J.G. Cotorruelo, C. Gómez-Alamillo, S. Sanz de Castro, A.L.M. de Francisco, and M. Arias

Transplantation Proceedings, 37, 3819–3820 (2005)

Functional Status	Alleles
Normal function ¹	*1
No function	*3, *6, *7
Unknown/limited data	*2,*4, *5, *8, *9

Assignment of Likely Metabolism Phenotypes Based on CYP3A5 Diplotypes:

Likely phenotype	Genotypes	Examples of diplotypes
Extensive metabolizer (CYP3A5 expresser)	An individual carrying two functional alleles	*1/*1
Intermediate metabolizer (CYP3A5 expresser)	An individual carrying one functional allele and one nonfunctional allele	*1/*3, *1/*6, *1/*7
Poor metabolizer (CYP3A5 nonexpresser)	An individual carrying two nonfunctional alleles	*3/*3, *6/*6, *7/*7, *3/*6, *3/*7, *6/*7

Ethnicity	Frequencies of Alleles				
	*1	*3	*6	*7	
African	0.558	0.298	0.172	0.077	
African American	0.605	0.316	0.111	0.120	
South East African	0.744	0.157	0.194	0.142	
Asian	0.258	0.742	0.001	0.000	
Southwest Asian	0.342	0.659	0.000	NA	
Caucasian	0.078	0.921	0.001	0.000	
Middle Eastern	0.105	0.881	0.019	0.002	
Latin American	0.202	0.765	0.037	0.025	

Frequencies of CYP3A5 alleles in major race/ethnic groups [6].

Table 2 Frequency of CYPA5 alleles in different ethnic populations

	Frequency of CYP3A5 allele	ei	
Ethnic population	CYP3A5 *1/*1 (%)	CYP3A5 *1/*3 (%)	CYP3A5 *3/*3 (%)
Caucasian		13–17	82–86
Black	37–45	40–54	9–15
Indian	2.5–11	38–57	32–60
Chinese	7.7	44.8	47.4

Chen & Prasad, 2018

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Pharmacogenetic-based strategy using *de novo* tacrolimus once daily after kidney transplantation: prospective pilot study

Pharmacogenomics (2016) 17(9), 1019–1027

Population		Expressors	5	Non- expressors	Total
СҮРЗА5		*1/*1	*1/*3	*3/*3	-
	n	7	16	128	151
Recipients	Mean age \pm SD (y)	48 ± 14*	45 ± 12*	50 ± 13*	49 ± 12
	Sex (F/M)	4/3	9/7	43/85	56/95
Donors	Deceased	5	10	101	116 (77%)
	Living	2	6	27	35 (23%)
Mismatch	Median	3	3	3	3
	Range	2–5	0-6	0-6	0-6
Transplantation rank	First	6	16	123	145
	Second	1	0	5	6
Primary kidney disease	Glomerulonephritis	1	5	20	26
	Interstitial nephritis	0	3	17	20
	APKD	0	2	37	39
	Hereditary disease	1	1	12	14
	Systemic disease	0	2	12	14
	Vascular disease	1	0	6	7
	Diabetes	0	1	5	6
	Unknown	4	2	19	25

Byun et al, 2016

Byun et al, 2016

lable 4. la	crolimus doses-	adjusted blood	concentrations	according to stu	udy groups.		
Patient Dose-adjusted Tac C _{min} (ng.ml ⁻¹ /mg/kg b.					⁻¹ /mg/kg b.w.)		
groups	Day 3	Day 6	Day 14	Month 1	Month 3	Month 6	Month 12
Group 1	72.6 (29.1−162.3)⁺, n = 66	70.0 (24.8−161.5)⁺, n = 66	65.8 (23.5–212.8)†, n = 66	85.1 (21.2–293.8)⁺, n = 64	97.3 (29.2–372.3)†, n = 66	110.7 (26.8–327.4) ⁺ , n = 64	122.6 (19.5–270.0) ⁺ , n = 50
Group 2	65.5 (23.8−124.5)†, n = 62	65.9 (21.6–312.0)†, n = 62	58.2 (21.2–285.6)⁺, n = 61	67.9 (18.1–214.1)⁺, n = 61	88.0 (25.2–263.5) ⁺ , n = 62	97.1 (21.3–292.4) ⁺ , n = 62	103.7 (33.3–360.8)⁺, n = 60
Group 3	45.6 (15.6–95.1)‡, n = 16	37.3 (10.8–83.1)‡, n = 15	34.3 (11.7–90.0) [‡] , n = 15	38.4 (14.9–118.4)‡, n = 16	43.8 (13.5–70.0)‡, n = 16	38.0 (17.8–118.8)‡, n = 16	38.1 (21.3–103.7) [‡] , n = 14
Group 4	37.7 (23.9–51.8) [‡] , n = 7	22.3 (12.8–36.7)‡, n = 7	21.3 (17.0–34.5)‡, n = 7	27.8 (20.9–33.3)‡, n = 7	30.0 (18.1–46.3)‡, n = 7	25.1 (20.6–37.0)‡, n = 7	32.9 (13.7–40.9) [‡] , n = 6
Kruskal– Wallis test	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
3.4.1	1 12 7		(1)				

Values are expressed as median (range [Kruskal–Wallis test]). ^{†,‡}Values with the same superscript letter do not differ significantly from each other, according to *post-hoc* analysis.

Group 3

Group 2

Group 1

Byun et al, 2016

Group 4

Accepted: 15 November 2017

DOI: 10.1111/ctr.13162

ORIGINAL ARTICLE

WILEY Clinical TRANSPLANTATION

Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients

Tomefa E. Asempa¹ | Lorita M. Rebellato² | Suzanne Hudson³ | Kimberly Briley² | Angela Q. Maldonado⁴

ORIGINAL ARTICLE

A randomized clinical trial of age and genotype-guided tacrolimus dosing after pediatric solid organ transplantation

WILEY

Sandar Min¹ | Tanya Papaz¹ | Myriam Lafreniere-Roula¹ | Nadya Nalli² | Hartmut Grasemann¹ | Steven M. Schwartz³ | Binita M. Kamath¹ | Vicky Ng⁴ | Rulan S. Parekh^{1,5,6} | Cedric Manlhiot⁷ | Seema Mital¹

Min et al, 2018

Min et al, 2018

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for *CYP3A5* Genotype and Tacrolimus Dosing

KA Birdwell^{1,2}, B Decker³, JM Barbarino⁴, JF Peterson^{2,5}, CM Stein^{2,6}, W Sadee⁷, D Wang⁷, AA Vinks^{8,9}, Y He¹⁰, JJ Swen¹¹, JS Leeder¹², RHN van Schaik¹³, KE Thummel¹⁴, TE Klein⁴, KE Caudle¹⁵ and IAM MacPhee¹⁶

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 98 NUMBER 1 | JULY 2015

CPIC GUIDELINES

CYP3A5 phenotype ^a	Implications for tacrolimus pharmacologic measures	Therapeutic recommendations ^b	Classification of recommendations ^c
Extensive metabolizer (CYP3A5 expresser)	Lower dose-adjusted trough concen- trations of tacrolimus and decreased chance of achieving target tacrolimus concentrations.	Increase starting dose 1.5–2 times recommended starting dose. ^d Total starting dose should not exceed 0.3 mg/kg/day. Use therapeutic drug monitoring to guide dose adjustments.	Strong
Intermediate metabolizer (CYP3A5 expresser)	Lower dose-adjusted trough concen- trations of tacrolimus and decreased chance of achieving target tacrolimus concentrations.	Increase starting dose 1.5–2 times recommended starting dose. ^a Total starting dose should not exceed 0.3 mg/kg/day. Use therapeutic drug monitoring to guide dose adjustments.	Strong
Poor metabolizer (CYP3A5 nonexpresser)	Higher ("normal") dose-adjusted trough concentrations of tacrolimus and increased chance of achieving target tacrolimus concentrations.	Initiate therapy with standard recom- mended dose. Use therapeutic drug monitoring to guide dose adjustments.	Strong

Table 2 Dosing recommendations for tacrolimus based on CYP3A5 phenotype

American Journal of Transplantation 2016; 16: 2085–2096 Wiley Periodicals Inc.

doi: 10.1111/ajt.13691

A Randomized Controlled Trial Comparing the Efficacy of *Cyp3a5* Genotype-Based With Body-Weight-Based Tacrolimus Dosing After Living Donor Kidney Transplantation

N. Shuker^{1,2,*,†}, R. Bouamar^{2,†}, R. H. N. van Schaik³, M. C. Clahsen-van Groningen⁴, J. Damman⁵, C. C. Baan¹, J. van de Wetering¹, A. T. Rowshani¹, W. Weimar¹, T. van Gelder^{1,2} and D. A. Hesselink¹

Shuker et al, 2017

	Standard-dose group	Genotype-based group	р
Recipient gender			1
Male/female	73 (61.3%)/46 (38.7%)	75 (63.6%)/43 (36.4%)	0.73
Age of recipient (years)	57 (19–79)	55 (19–79)	0.55
Ethnicity			0.89
White	93 (78.2%)	93 (78.8%)	
Asian	13 (10.9%)	10 (8.5%)	
Black	11 (9.2%)	12 (10.2%)	
Other	2 (1.7%)	3 (2.5%)	

 Table 1: Baseline characteristics

Shuker et al, 2017

Prospective CYP3A5 Genotyping Is Associated with Significantly Lower ACR ≥2R in Heart Transplant Recipients

Wilson NK^{1,2}, Van Zyl J^{1,2}, Kataria AD^{1,2}, Patel R, Sam T^{1,2}, Hall SA^{1,2}, Askar M^{1,2,3}

Table: Comparison of Outcomes between Patients retrospectively vs. prospectively assessed withCYP3A5 genotyping.

Baseline Characteristics	Overall (n=158)	Retrospective (n=55)	Prospective (n=103)	P- value
Age (years)	59.8 [54.5, 65.3]	59.5 [53.9, 64.6]	60.2 [55.4, 65.8]	0.31
Sex, male	116 (73%)	39 (71%)	77 (75%)	0.74
Diabetes	64 (41%)	23 (42%)	41 (40%)	0.94
Ischemic Cardiomyopathy	55 (35%)	19 (35%)	36 (35%)	1.00
CYP3A5 Genetic Polymorphism				0.56
*1/*1	11 (7%)	5 (9%)	6 (6%)	
*1/*3	33 (21%)	9 (16%)	24 (23%)	
*1/*other	8 (5%)	1 (2%)	7 (7%)	
*3/*3	95 (60%)	36 (65%)	59 (57%)	
*3/Other	9 (6%)	3 (5%)	6 (6%)	
Other	2 (1%)	1 (2%)	1 (1%)	
Induction				0.02
None	134 (85%)	43 (78%)	91 (88%)	
Simulect (basiliximab)	17 (11%)	11 (20%)	6 (6%)	
Antithymocyte globulin (Thymo, rATG)	7 (4%)	1 (2%)	6 (6%)	
Outcomes				
FK Coefficient of Variation (%)	27.3 [22.4, 34.2]	27.1 [20.7, 34]	27.3 [23.9, 34.4]	0.15
FK Mean (ng/mL)	10.2 [9.3 <i>,</i> 11.1]	10.4 [9.4, 11.1]	10.1 [9.3, 11.1]	0.36
FK SD (ng/mL)	2.8 [2.3, 3.4]	2.7 [2.1, 3.5]	2.8 [2.4, 3.4]	0.30
Time to stable therapeutic levels (days)	11 [8, 18]	11 [8, 20.5]	10 [7, 17]	0.11
Time to therapeutic levels (davs)	7 [6, 10]	8 [5, 10]	7 [6, 9]	0.79
ACR≥2R	12 (8%)	11 (20%)	1 (1%)	<0.001
pAMR≥1	8 (5%)	0 (0%)	8 (8%)	0.05
Death 1-year	1 (1%)	0 (0%)	1 (1%)	1
Death 2-year	7 (4%)	2 (4%)	5 (5%)	1
Positive DSA	59 (37%)	21 (38%)	38 (37%)	1
Positive De Novo DSA	56 (35%)	21 (38%)	35 (34%)	0.72

Covariate	Coefficient ^a (S.E.)	P value
<i>CYP3A5*3</i>	0.54 (0.044)	7.15×10^{-29}
Albumin ^{b} (x)	-0.17 (0.04)	2.07×10^{-5}
(x')	0.12 (0.04)	0.005
Age	0.007 (0.002)	1.80×10^{-5}
Weight ^{b} (x)	-0.007 (0.002)	3.24×10^{-4}
(x')	0.006 (0.002)	0.004
Hemoglobin	0.015 (0.006)	0.012
Days post transplant $b(x)$	$0.0004 \ (6.2 \times 10^{-5})$	2.97×10^{-9}
(x')	$-0.0012 (2.5 \times 10^{-4})$	2.44×10^{-6}
Sex (Male vs. Female)	0.034 (0.043)	0.431

Birdwell et al, 2012

Beyond Single Nucleotide Polymorphisms: *CYP3A5*3*6*7* Composite and *ABCB1* Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients

Daniel A. Brazeau¹*, Kristopher Attwood², Calvin J. Meaney^{3,4}, Gregory E. Wilding², Joseph D. Consiglio², Shirley S. Chang^{5,6}, Aijaz Gundroo^{5,6}, Rocco C. Venuto^{5,6†}, Louise Cooper^{3,4} and Kathleen M. Tornatore^{3,4,5}

August 2020 | Volume 11 | Article 889

British Journal of Clinical Pharmacology

Br J Clin Pharmacol (2019) 85 601–615 601

ORIGINAL ARTICLE

A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients

L. M. Andrews¹ (D), D. A. Hesselink^{2,3,*} (D), R. H. N. van Schaik⁴ (D), T. van Gelder^{1,2,3} (D), J. W. de Fijter⁵ (D), N. Lloberas⁶ (D), L. Elens⁷ (D), D. J. A. R. Moes⁸ (D) and B. C. M. de Winter¹ (D)

L. M. Andrews et al.

```
Dose (mg) = 222 ng h ml^{-1} * 22.5 l h^{-1}
```

```
*[(1.0, if CYP3A5*3/*3) or (1.62, if CYP3A5*1/*3 or CYP3A5*1/*1)]
*[(1.0, if CYP3A4*1 or unknown) or (0.814, if CYP3A4*22)]*\left(\frac{\text{Age}}{56}\right)^{-0.50}*\left(\frac{\text{BSA}}{1.93}\right)^{0.72}/1000
```

- For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates.

- The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.

Avoiding Tacrolimus Underexposure and Overexposure with a Dosing Algorithm for Renal Transplant Recipients: A Single Arm Prospective Intervention Trial

ARTICLE

Marith I. Francke^{1,2,3,*}, Louise M. Andrews^{4,5}, Hoang Lan Le⁴, Jacqueline van de Wetering^{1,2}, Marian C. Clahsen-van Groningen^{2,6}, Teun van Gelder⁷, Ron H. N. van Schaik⁸, Bronno van der Holt⁹, Brenda C. M. de Winter^{2,4} and Dennis A. Hesselink^{1,2}

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 0 NUMBER 0 | Month 2021

Group 3

Group 2

Group 1

Byun et al, 2016

Group 4

PGx in HCT

http://www.huffingtonpost.com

Khaled et al, 2016

Very Convincing!

Right?

• Poor training of current and future health professionals in pharmacogenomics and pharmacogenomics communication

- No common point-of-care education resources
- Few patient education materials

- ELSI
- Ethics (privacy, equity, incidental findings, decision making)
- Priv
 Eeg
- Privacy issues (informed consent)
 Legal issues (discrimination, patents)
 - Incomplete coverage of the Genetics Nondiscrimination Act (GINA)

Barriers

Summary

- PGx testing yields clinically actionable results that are conducive to the practice of precision medicine
- Future models for prediction of optimal dosing will integrate PGx markers as well as biological attributes such as pharmacokinetics, age and BSA

Thank you

Email: maskar@qu.edu.qa / maskar3@nmdp.org

30th International Congress of The Transplantation Society (TTS 2024) | Istanbul, Turkey | September 22-25, 2024

