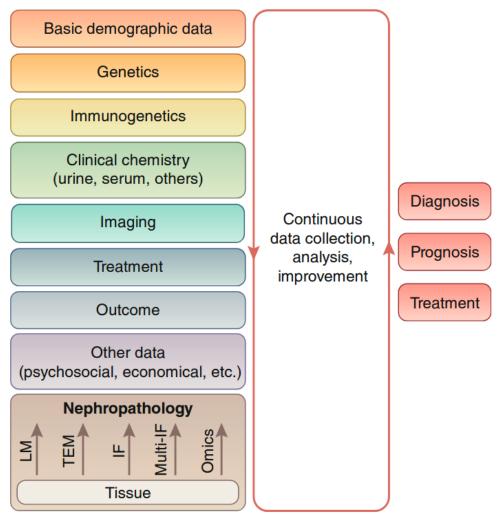
Prognostication and Theranostics in Nephrology on Multimodal Datasets

Jan U. Becker

Cologne, Germany

Nephropathology big data und precision medicine



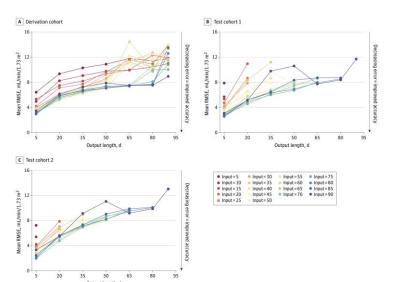
Prognostic ML in Transplant Nephrology

- Renal transplant study
- First three months
- Training set: 100,867 values
- 2 test sets: 39,999
- Input: Sequence of eGFR
- Output: future eGFR
- Architecture: Sequence-to-Sequence Deep Learning vs. Autoregressive integrated moving average (ARIMA)

Table 2.1 errormance of / trainit/ table sequence to sequence models in the servation constr								
RMSE (mL/min/1.73 m ²)								
Derivation cohort								

Table 2. Performance of ARIMA and Sequence-to-Sequence Models in the Derivation Cohorta

	KWI3E (IIIE/IIIII/ 117 3 II	(m2/mm/175 m)					
	Derivation cohort						
Sequence	ARIMA	Sequence-to-sequence					
IN: 5/OUT: 5	11.38	6.40					
IN: 5/OUT: 15	9.25	6.92					
IN: 30/OUT: 30	7.62	6.59					
IN: 45/OUT: 45	7.48	6.94					
IN: 90/OUT: 90	10.20	8.90					



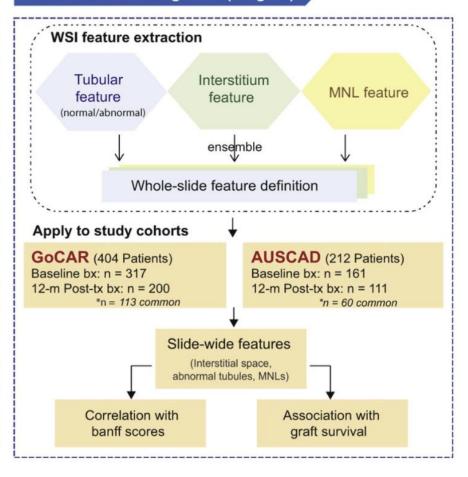
Prognostic ML in Transplant Nephropathology

Feature maps

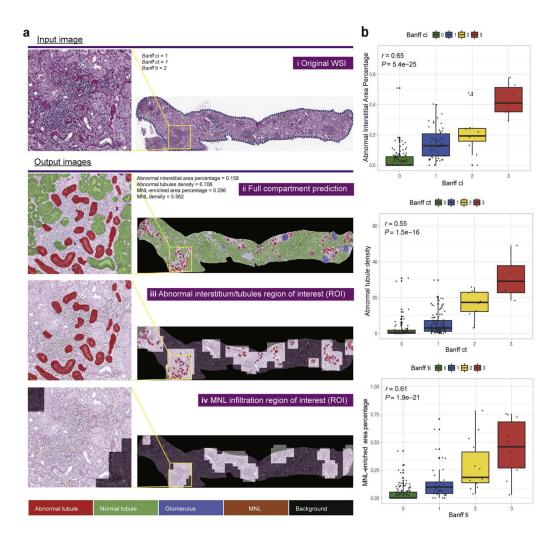
Tissue compartment recognition (stage I) Deep-learning model generation GoCAR Object detection 1164 PAS slides model MRCNN 93 PAS slides Slide section annotation Feature maps (Tubules, glomeruli, interstitium, arteries MNLs) Segmentation model **U-Net** Training set (60 slides, 17,470 object images) 10-fold cv Decoder Feature maps

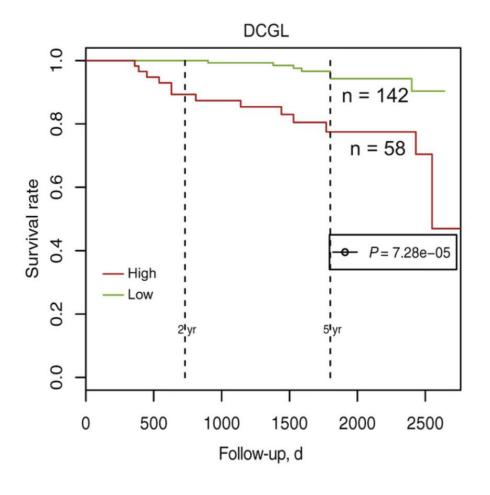
Testing set (33 slides, 5222 object images)

WSI clinical investigation (stage II)



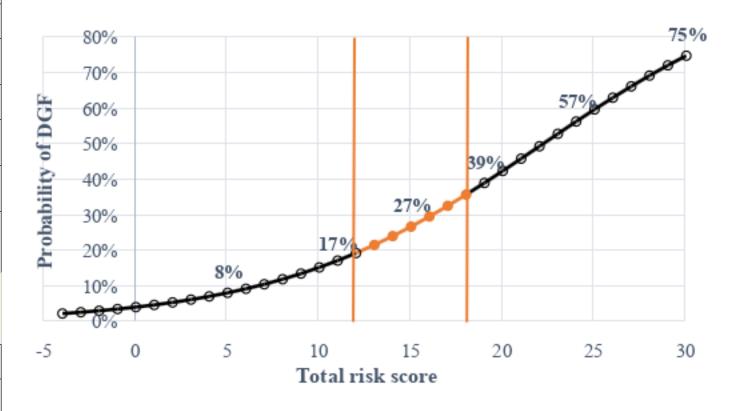
Prognostic ML in Transplant Nephropathology





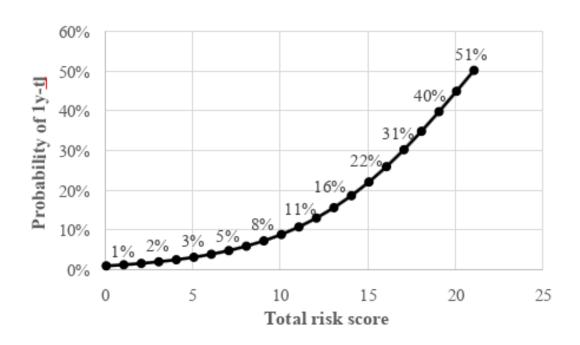
2-Step-Score for the Prognostication of Delayed Graft Function

Risk factor			Risk score					
Donor BMI	< 18.5	< 18.5 to < 25			to < 30	>= 30		
(kg/m²)	-2	(O		+3	+6		
Recipient	< 18.5	18.5 t	o < 25	25	to < 30	>= 30		
BMI (kg/m²)	-2	(0		+2	+3		
Recipient	Negative				Positive			
CVM IgG		0			+5			
Number of HLA-DR	Less than two							
mismatches		0			+6			
Dialysis	< 1	1 to < 3 3 to		< 4	4 to < 6	>= 6		
vintage in years	0	+1	+	2	+3	+3 +5		
Cold	< 2	2 to <6	6 to <10	10 to < 14	14 to < 1	8 >= 18		
ischaemia time in hours	0	+1	+2	+3	+4	+5		
Total score without	- 4 to 11 points 12 to 18 (18% to 3			•				
histological assessment	I	Low risk		Medium risk: histological assessment advised		l Increased risk		
Number of		< 20	20 to <	20 to < 30		>= 40		
glomeruli		0	-2	-2		-7		
Danff or		cv0, cv	1 or cv2		cv3			
Banff cv			0					
	Total score =						:	
							1	

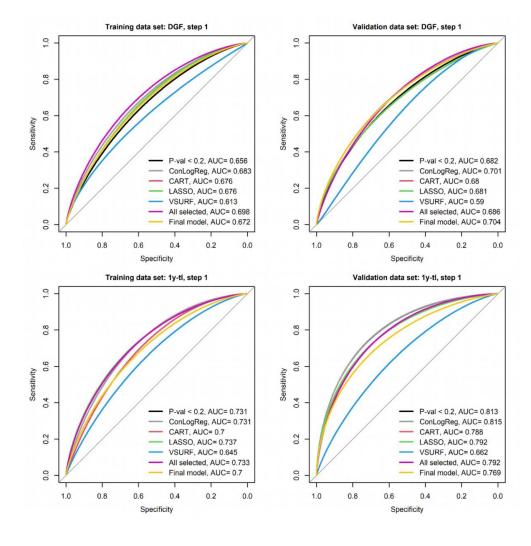


2-Step-Score for the Prediction of 1-Year Transplant Survival

Risk factor	Addition to risk score					Risk score		
D	< 30	30 to < 4	0	40 to < 50 50 to		to < 60	>= 60	
Donor age in years	0	+1		+3	+4		+6	
Sum of HLA-A, -B and - DR mismatches	0	1	2	3		4 or 5	6	
	0	+1	+2	+3	+3 +4		+5	
Cold ischaemia time in hours	< 2	2 to <6	6 to <1 0	10 to <	14	14 to < 18	>= 18	
Total score without histological assessment	0	+1	+2	+3		+4	+5	
Banff ct	ct0 or ct1		ct2 or ct3 +6					
	Total score =						score =	



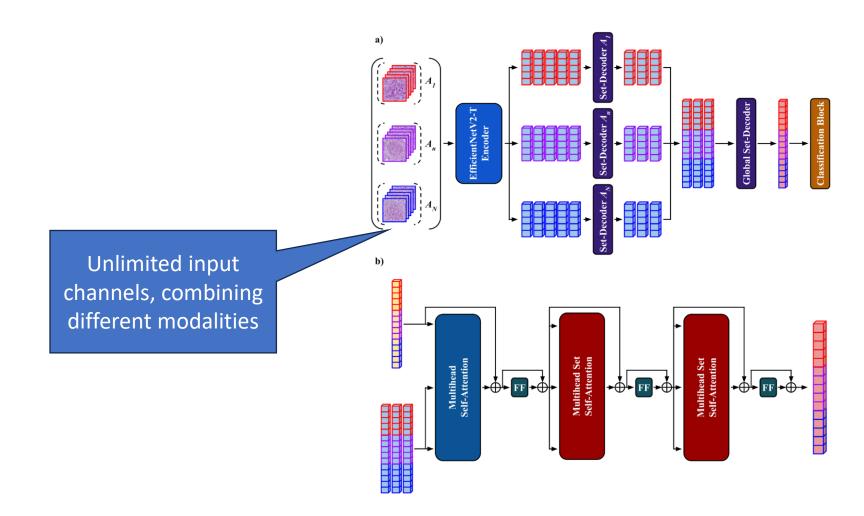
LogReg superior to ML in 2-Step-Score Development



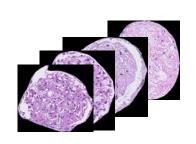
Multimodal Machine Learning

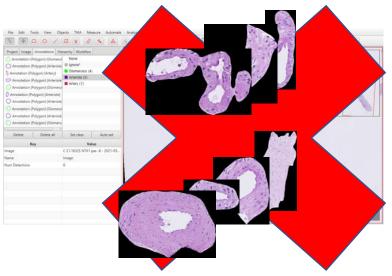
- Use every source of information available for the task
- Not just histology images
 Paraffin histology
 Immunohistology
 Electron microscopy
- But also clinical parameters
- Including e.g. immunogenetic data for transplants
- Parametrisation of such data?

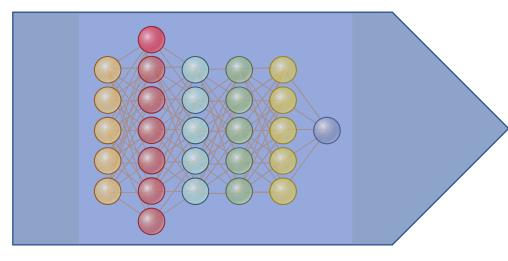
MILxFormer Architecture



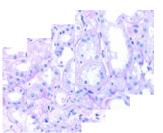
ML as Multiple-Instance Learning



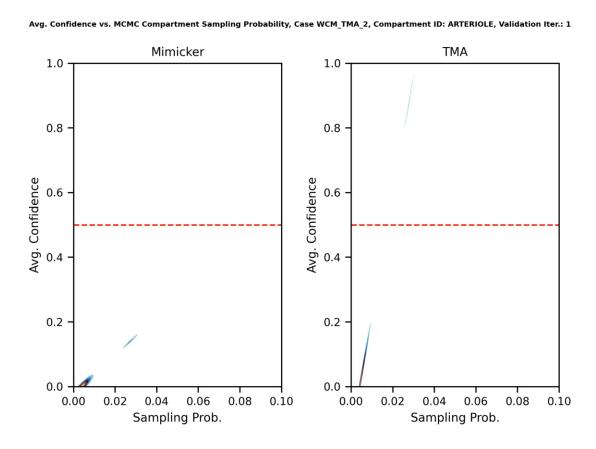


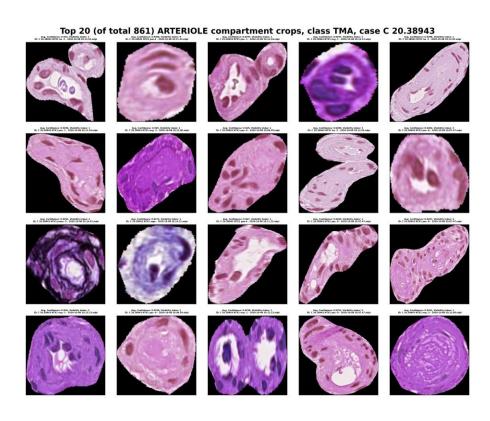


Meaningful output

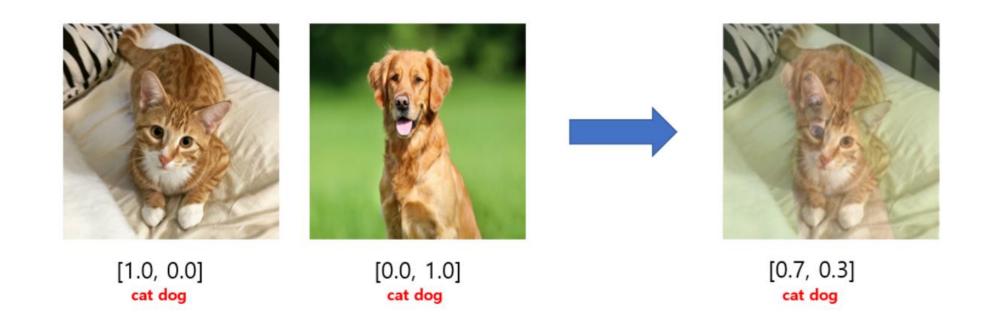


Soft Markov Chain Monte Carlo Sampling



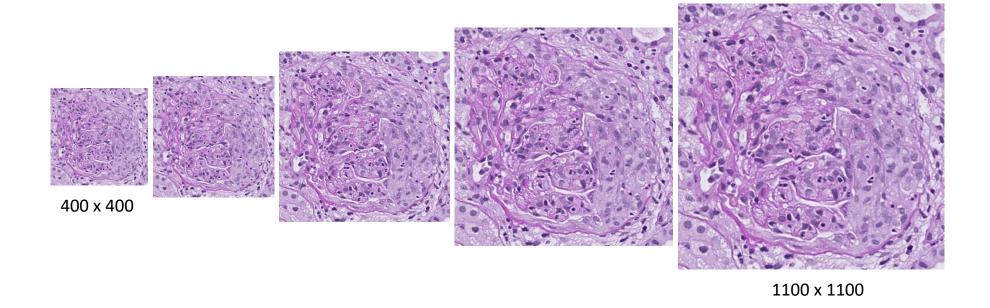


Advanced Methods of Sample Size Augmentation for MILxFormer: MixUp



Advanced Methods of Sample Size Augmentation for MILxFormer: MILxScale

4 different resolutions from to 1100 x 1100

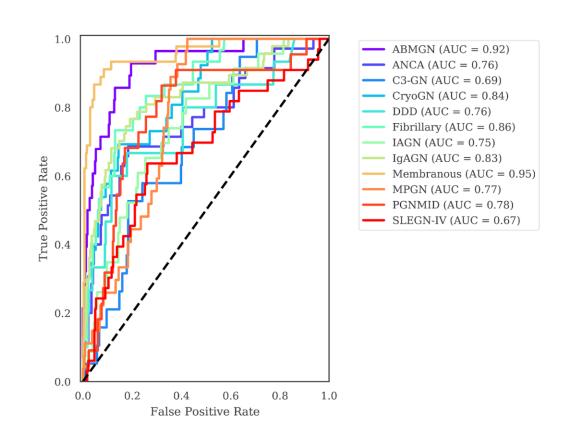


Development of MILxFormer from MorphSet

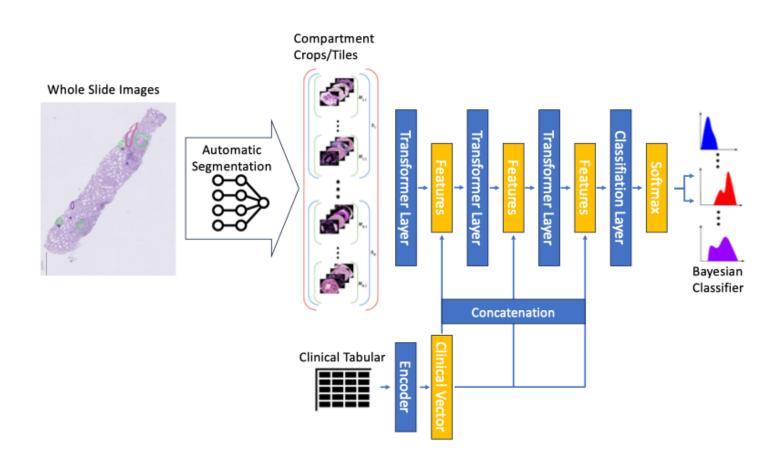
- Soft Markov Chain Monte Carlo Sampling instead of MC Sampling
- MILxUp: implementation of MixUp Zhang et al arXiv 2020 sample size augmentation
- MILxScale: 4 different resolutions from 400 x 400 to 1100 x 1100 as sample size augmentation
- MILxDrop: dropout (removal of corrupted filter nodes) in order to improve generalisation

MILxFormer Architecture for Advanced Classification tasks

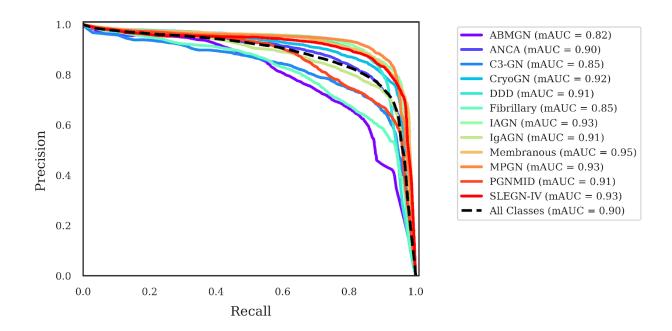
- Input: PAS glomerular transections (crops)
- Output: 12 classes of GN
- Training set: glomerular crops from 350 biopsies
- Weakly supervised training
- MILxFormer architecture
- Internal cross-validation

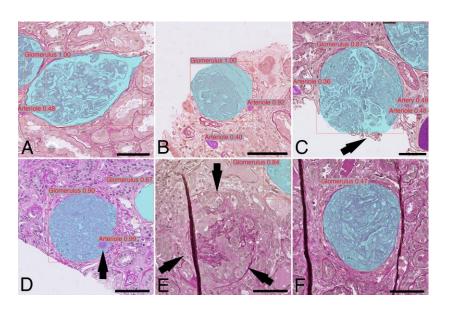


MILxFormer+ for Multimodal Data



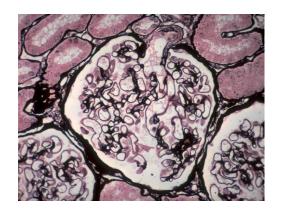
Automatic Segmentation

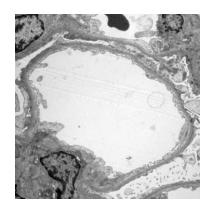


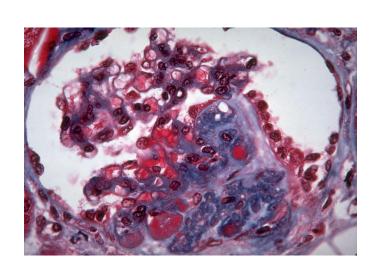


Integration of clinical tabulation with histology: Treatment response with SRNS

- Steroid resistant nephrotic syndrome: podocytopathy predominantly in children
- Cause: defect in podocyterelevant genes or unknown circulating factor (T cellsecreted?)
- Histology: minimal changenephropathy, FSGS, diffuse mesangial sclerosis (DMS)

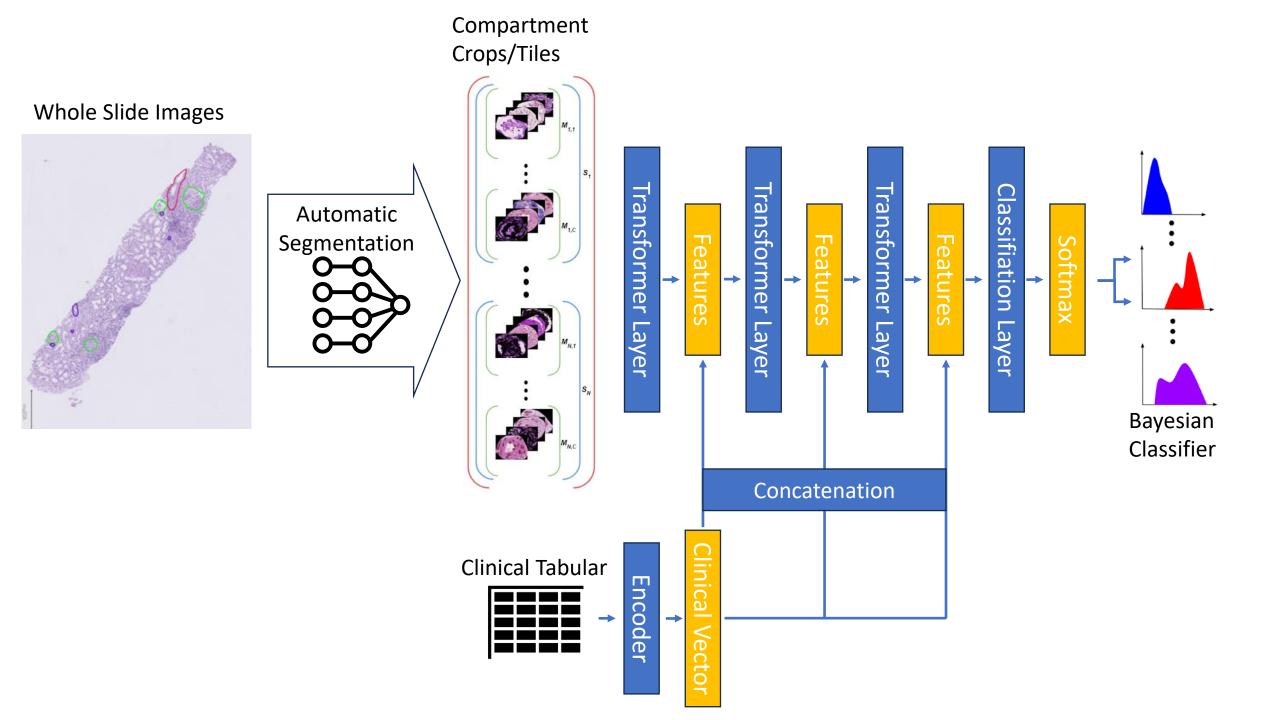




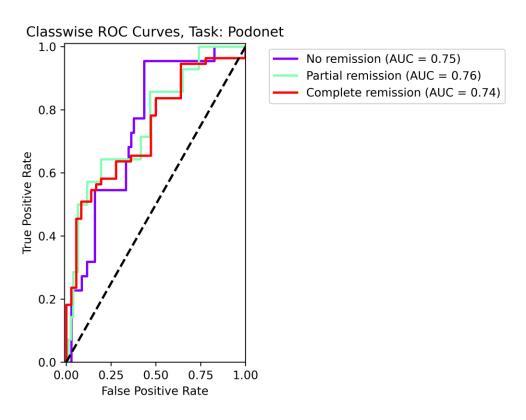


Steroid Resistant Nephrotic Syndrome

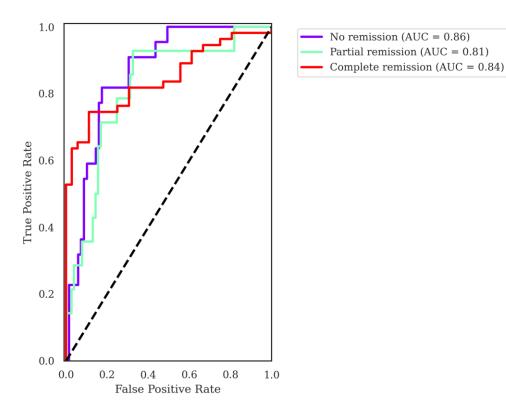
- Steroid resistance: max. 14 weeks without response to immunosuppression
- Then "intensified immunsuppression" with e.g. CNIs
- Current paradigm: conventional histology inferior for prognosis and theranostic compared to genetics
- PodoNet cohort, 14 centres (Izmir to Vilnius), very large domain shifts
- n=201 biopsies, n=114 no remission, n=42 partial remission, n=45 complete remission



Theranostics for SRNS with MILxFormer

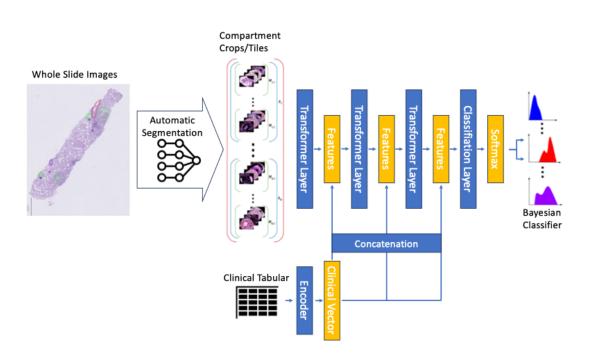


Gaussian naive Bayes classifier
Only clinical data at biopsy (incl. binary Mutation)

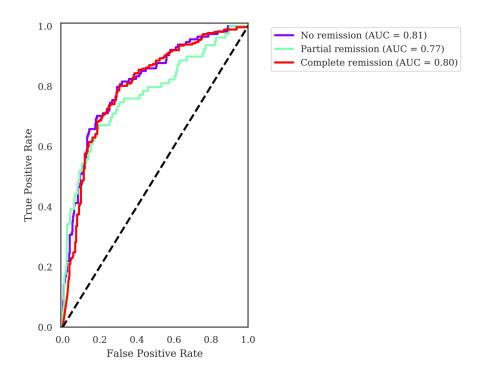


MILxFormer Only histology

Theranostics for SRNS with MILxFormer

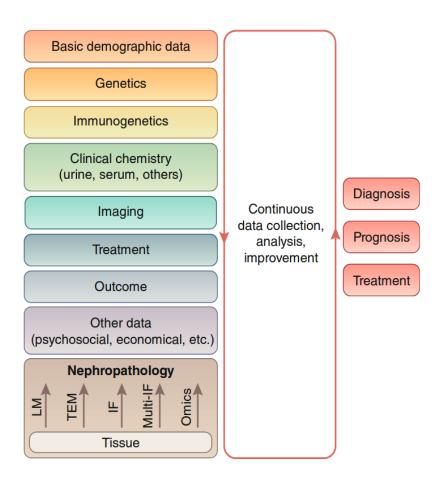


Response to intensified IS in SRNS (5-fold internal cross-validation)



Vo, Gimpel et al., manuscript in preparation

Nephropathology, Big Data and Precision Medicine



Summary/Outlook

- Weakly supervised ML ist currently the only realistic option for the evaluation of large clinico-pathological datasets for diagnostics, prognostication and theranostics
- A framework of segmentation followed by classification allows for rapid and efficient, training, upscaling and expansion with large datasets from trusted institutions
- We need large reference datasets with ERKNet's ERKReg,
 CERTAIN/CTS as go-to platforms for native and transplant nephrology
- Integration of (multimodal) foundation models next frontier

Datasets with (treatment) outcome needed

Thank you!

- Houston: Hien V. Nguyen, Pietro A. Cicalese, Syed Rizvi, Chandra Mohan, Badri Roysam
- Cologne: Angela Ernst, Martin Hellmich, Ana Harth, Wolfgang Arns, Dirk Stippel
- Amsterdam: Joris Roelofs, Jesper Kers
- Italy: Nicola Altini, Francesco Pesce, Savino Sciascia, Albino Eccher, Tino Gesualdo
- Rotterdam: Marian Clahsen-van Groningen
- London: Candice Roufosse
- Szeged: Béla Ivanyi, Sándor Turkevi-Nagy
- New York: Surya Seshan, Ibrahim Batal
- Baltimore: Avi Rosenberg
- ERKNet, PodoNet (F. Schäfer), CERTAIN (B. Tönshoff)
- DFG and Köln Fortune