

Eksozomlar

Prof. Dr. Tülay Kılıçaslan Ayna

İzmir Katip Çelebi Üniversitesi Tıp Fakültesi Tıbbi Biyoloji AD.
TEAH Doku Tipleme Lab.

REVIEW

Exosomes and microvesicles in kidney transplantation: the long road from trash to gold

Luis Ramalhete^{1,2,3}, Ruben Araújo², Aníbal Ferreira^{2,4}, Cecília R. C. Calado^{5,6}

Yıllar	Yayın sayısı
1991-2014	43
EV-2024	4455
Exo-2024	3213

Protein	41860
RNA	7540
miRNA	764
Lipit	1116

Uluslararası Extrasellüler veziküller Derneğinin (ISEV) yönergesi;

EV'lerin biyokimyasal bileşimi farklıdır; ancak ISEV, EV'lerin izolasyonu, karakterizasyonu ve onayı için yönergeler tanımlamıştır.

Table 1 Main characteristics of exosomes, microvesicles, and apoptotic bodies

	Exosomes	Microvesicles	Apoptotic bodies	References
Size	30–100 nm	100-1,000 nm	1–5 μm	[3]
Origin	Intraluminal vesicles within multivesicular bodies	Plasma membrane and cellular content	Plasma membrane, cellular fragments	[4]
Mechanism of formation	Fusion of multivesicular bodies with the plasma membrane	Outward blebbing of the plasma membrane	Cell shrinkage and programmed cell death	[5, 6]
Release	Constitutive and/or cellular activation	Constitutive and/or cellular activation	Apoptosis	[4]
Time of release	Ten minutes or more	Few seconds	_	[7, 8]
Pathways	ESCRT-dependent Tetraspanin-dependent Ceramide-dependent Stimuli-dependent	Ca ²⁺ -dependent Stimuli- and cell-dependent	Apoptosis-related	[3]
Lipid membrane composition	Enriched in cholesterol and ceramide, expose phosphatidylserine, contain lipid rafts	Expose phosphatidylserine, enriched in cholesterol and diacylglycerol, contain lipid rafts	-	[3, 9]
Content	Proteins, mRNA, miRNA, lipids	Proteins, mRNA, miRNA, lipids	Cell organelles, proteins, nuclear fractions, DNA, coding and noncoding RNA, lipids	[3]

ESCRT endosomal sorting complex required for transport

Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases

Exosomes in transplantation: Role in allograft rejection, diagnostic biomarker, and therapeutic potential -2023

A. DIRECT PATHWAY OF ALLORECOGNITION

Cross dressing

Trogocytosis

B. INDIRECT PATHWAY OF ALLORECOGNITION

Exosomes

Donor cell

DC

Tunneling Nanotubes

C. SEMI-DIRECT PATHWAY OF ALLORECOGNITION

Frelinger Jeffrey-1974

MHC'lerin lökositler arasında transferi

Brian Dolan-2006

Transferden sonra MHCpeptit kompleksleri iki gün boyunca APC de exp.

Semi-direct presentation

Lesley Smythe 2013

Alıcı DC'leri trf
allogeneik MHC-sınıf I
kazanımının,
transplantasyonu
takiben en az 1 ay
boyunca
gerçekleştiğini ve CD8
T hücre
aktivasyonunun temel
sebebi olduğunu
göstermişlerdir.

2016

Jose Marino

100/1000000 donör DC 90000/1000000 Cross dressing alıcı APC

Mohamed H. Babiker-Mohamed

Marino J. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation, Science Immunology, 2016.

2016

Adrian Morelli

Liu Q, Morelli AE, Donor dendritic cell-derived exosomes promote allograft-targeting immune response, J Clin Invest, 2016

Tetraspaninler

- ✓ PRR
- ✓ MHC II
- ✓ Adezyon molekülleri
- ✓ Sinyal molekülleri

Tetraspanins as Organizers of Antigen-Presenting Cell Function -2018

Tetraspanins act as key players in APC migration

EV'yi salgılayan Hücre!!!!! farklı T hücre yanıtları EV'lerin transfer ettiği kargo !!!!!!!! Sayı!!!!!!

Donor-derived Recipient-derived

Life Sciences 324 (2023) 121722

Kompleman pro Kostimulatörler

Non invasif tanı aracı olarak Exosomlar

```
Kan,
İdrar
Bronkoalveolar lavaj (BAL),
Tükürük,
Süt,
Amniyotik sıvı
```


Exosome temelli tedaviler

- Lipit bariyer ilacın korunması açısından önemli
- Alıcı hücrelere endositozu kolaylaşır.
- Exosomların düşük immunojenitesi yan etkiyi azaltır.
- Kan beyin bariyerini geçer

Anti kanser etki

Yan etki

Stabilite

Kan konsantrasyonunda

Lipopolisakkaritlerle indüklenen septik şoka karşı koruyucu

Table 1 Recipient's exosomes were used as a potential biomarker in clinical transplantation.

	Transplant Type	Methods used	The outcome of the study
1	Kidney	LC-MS/MS	The global protein contents were profiled from the exosomes isolated from the urine samples of transplant recipients
			About 17 proteins were seen to increase in the exosomes of the transplant recipients diagnosed with T cell-mediated rejection (TCMR)
			 Tetraspanin-1 and hemopexin in the exosomes were significantly
2	Kidney	qPCR	higher in TMCR recipients [33]. Total RNA was extracted from the plasma samples collected from the transplant recipients
			 About 21 candidate mRNA levels are high in the exosomes of recipients diagnosed with antibody-mediated rejection
			Among them, gp130, SH2D1B, TNFα, and CCL4 mRNAs were significantly higher in AMR cohort exosomes than in other groups [32].
3	Kidney	iKEA (Biochip)	Exosomes were directly captured from the urine samples collected from the recipients
			The ikea captured high levels of CD3 (T- cell marker) positive exosomes in allograft-rejecting recipient's urine samples with 91.1 % accuracy. [72]
4	Kidney	qPCR (TaqMan)	 Exosomes were isolated from the recipient urine samples and the miRNAs were quantified using TaqMan qPCR
			 The elevated amount of BK viral miRNAs B1-5p and 3p in the urine exosomes of renal trans- plant recipients with BK virus nephropathy (BKVN).
			 These exosomal viral miRNAs could be used as a surrogate marker for the diagnosis of BKVN [116]

Transplant Type	Methods used	The outcome of the study
Pancreatic	HLA-specific NTA and	➤ Quantitation and
Islet	Immunoblotting	characterization of allo-islet exosomes in the recipient's plasma
		 The donor islet-specific exosome numbers decreased in the recip- ient plasma before islet graft dysfunction
		➤ The donor-specific islet exo- somes contain the exosome markers (CD63, flotillin), and transmembrane protein (FXYD2) along with donor-specific HLA molecules. [71]
Pancreatic Islet	NTA	Quantitation and characterization of allo-islet exosomes in the recipient's plasma
		➤ There is time specific increase of auto antigen GAD65 in the plasma exosomes of these recipients indicating the recurrence of autoimmunity in T1D recipients after islet transplantation [117]

Table 1 (continued)			Table	Table 1 (continued)			
	Transplant Type	Methods used	The outcome of the study		Transplant Type	Methods used	The outcome of the study
7	Pancreatic Islet	RNA sequencing and qPCR LC-MS/MS and ELISA	 ➤ Total RNAs were isolated from the Islet transplant recipient's plasma and miRNAs present were profiled using RNA sequencing and qPCR ➤ Islets release a significant amount of ER stress-induced miRNAs (miR-29b and miR-216a) and damage associated miRNAs (miR-375 and miR-148a) to the circulation during peritransplant time through exosomes ➤ The high amount of these exosomes release during the peritransplant period correlated with poor transplant outcomes in Islet transplants. [7,118] ➤ Proteomic profile of the 	12	Lung	Luminex, ELISPOT, and Immunoblotting	exosomes of the allograft- rejecting recipients. Further comparative pathway analysis revealed the possible mecha- nisms regulated by these miR- NAs such as Pi3K-AKT, Wnt, endocytosis, focal adhesion, ubiquitin-mediated proteolysis, MAPK kinase, and TGF-β. [18] The exosomes were isolated from the transplant recipient's serum and BALF The exosomes isolated from the serum of lung transplant recipients with BOS showed a significantly high amount of SAgs, Col-V, Kα1T, 20s protea- some α3 subunit, along with costimulatory molecules (CD80,
	Islet		exosomes isolated in samples collected during clinical islet isolations ➤ Analysis of the global protein				CD86, CD40, MHC-II), and tran- scription factors (NF-kB, HIF-1A, MHC CIITA, IRAK1, and MyD88) [17,119,120]
			content in the exosomes isolated during isolation reveals a high amount of DAMPs like histone (H2B, H3, and H4) and	13	Lung	RNA sequencing	The exosomes were isolated from the transplant recipient's BALF. The Global RNA content was profiled.
9	Heart	LC-MS/MS	Chaperons (HSP 70, HSPA1) The high amount of DAMPs/Islet equivalence (IEQ) released during isolation positively correlated with the recipient's post-transplant insulin requirement [80,81] Proteomic profiling of serum				 About 29 inflammatory and immune-related RNAs were seen significantly high in the exosomes isolated from the BALF of recipients with acute rejection. These exosomal RNAs could be a possible biomarker for acute rejection [121]

Table 1 (continued)

	Transplant Type	Methods used	The outcome of the study
9	Heart	LC-MS/MS	 Proteomic profiling of serum exosomes isolated from transplant recipients About 15 proteins were differentially expressed in the exosomes of the allograft rejected recipients compared to non-rejected recipients. Within these 15 proteins, 8 proteins were known for their role in immune regulation, complement activation, adaptive immunity, and coagulation. [75]
10	Heart	qPCR array	 Serum exosomes were isolated from the transplant recipients and the miRNA present were profiled using qPCR array The exosomes isolated from the allograft acute rejecting recipients showed enrichment of 4 miRNAs (miR-142, miR-92a, miR-339, and miR-21). The study has identified a novel mechanism of miR-142, which is
11	Lung	qPCR array and immune blotting	transferred to endothelial cells from acute rejecting allograft exosomes. MiR-142 regulates the recipient endothelial function by targeting RAB11FIP2. [27] The exosomes were isolated from the transplant recipient's serum and bronchoalveolar lavage fluid (BALF) Donor HLA and lung-associated
			self-antigens (SAgs), Collagen V (Col-V), and Kα1 tubulin were detected in the exosomes of allograft-rejecting recipients only. > About 123 miRNAs were differentially expressed in the

Tissue-associated self-antigens containing exosomes: Role in allograft rejection-2018

Teşekkürler