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IMAGE

What is a DIGITAL IMAGE???

Capabilities:

• Learning from data
• Recognizing patterns
• Making decisions
• Solving problems

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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Artificial Intelligence: An Overview

What is Artifical Intelligence?

The capability of machines to perform tasks that
typically require human intelligence

Capabilities:

• Learning from data
• (NOT MEMORIZING)

• Recognizing patterns
• Making decisions
• Solving problems

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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AI Tasks and Outputs

What Does AI Actually Do?

Classification

Raw input                 Output

MODEL

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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AI Tasks and Outputs

What Does AI Actually Do?

Regression
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AI Tasks and Outputs

What Does AI Actually Do?

Detection/Localization
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AI Tasks and Outputs

What Does AI Actually Do?

Segmentation
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AI Tasks and Outputs

What Does AI Actually Do?

Generation
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Machine Learning Subsets

Capabilities:

• Learning from data
• Recognizing patterns
• Making decisions
• Solving problems

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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Machine Learning Subsets

Capabilities:

• Learning from data
• recognizing patterns
• making decisions
• solving problems

• Supervised Learning
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Machine Learning Subsets

Capabilities:

• Learning from data
• recognizing patterns
• making decisions
• solving problems

• Unsupervised Learning

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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Neural Networks

Computational models inspired by the human brain's structure, consisting of 
interconnected nodes (neurons) organized in layers.

Y = Wx + B
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Neural Networks

Introduction AI Tasks ML Subsets Neural Networks Deep Learning

Model Training and Updating Weights
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Deep Learning

Definition: Neural networks with MANY hidden layers, capable of learning 
hierarchical representations of data.

Why "Deep" Matters:
•Layer 1 might detect edges and basic 
shapes in an image
•Layer 2 might recognize textures and 
simple patterns
•Layer 3 might identify tissue structures
•Layer 4 might recognize complex cellular 
arrangements
•Final layers make the diagnosis (e.g., 
cancer vs. normal)

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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Deep Learning vs. Traditional ML

The key difference:
• Deep Learning excels at unstructured data (images), while traditional Machine 

Learning works better for structured data (tables/numbers)

Introduction AI Tasks ML Subsets Neural Networks Deep Learning
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Digital Pathology

MD. Shakhawat Hossain et al. IEEE Access, 2023
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Application of AI in Digital Pathology

Trained on almost 400 cases
Tested on 200 Cases
Result: Dice Coefficient: 0.75

Angel Cruz-Roa et al. Scientific Reports, 2017
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Renal Rejection
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Current Diagnosis of AMR

www.banfffoundation.org
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▪ Studies documenting approximately 30% diagnostic 
difference rates between expert pathologists.

Challenges and Critical Limitations 

Inter-observer variability:

Byron Smith et al. Transplant International, 2019;

Bottlenecks regarding diagnostic workflow:

▪ 3-7 days for routine cases

▪ Nephropathologist demands

Ilaria Girolami et al. Journal of Nephrology, 2022

Digital Pathology Renal Rejection Banff Our Work
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Our Work

• Objective

• Workflow

WSI Acquisition
Glomeruli 

Segmentation
Feature 

Extraction

Model Training and 
Testing

Model Evaluation

Digital Pathology Renal Rejection Banff Our Work

AMR     versus      NoAMR
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▪ Whole slide images (WSI) represent one of the most challenging data types in medical 

imaging, with typical resolutions reaching 100,000 × 100,000 pixels and file sizes ranging 

from 0.5-4 GB per slide at 40× magnification. 

Specific Challenges in Pathology Data Acquisition 

▪ Staining variability represents another 

major challenge (Color normalization 

and standardization  preprocess is 

needed)

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training
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▪ Joined a Consortium Consisting of :

▪ Germany, United States, Italy, Spain, France, Hungary

▪ About 1800 WSIs belonging to 344 cases in total has been shared with us (165 AMR, 179 NoAMR).

▪ Each containing several Hematoxylin and Eosin (H&E), Periodic Acid-Schiff (PAS), Trichrome 

(Tri) stained WSIs.

▪ 200 of cases have information of Pathology report (including Banff scores)

▪ 56 cases has fully annotated compartments by Senior Pathologist (Prof. Jan Ulrich Becker)

▪ 12 cases from Koç University (6 AMR, 6 NoAMR)

How we overcame this challenge?

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training
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Auto-Segmentation Model

▪ Consortium shared their Auto-Segmentation model 

which is able to Segment Glomeruli, Arteriole and 

Artery in the Kidney Pathology images.

Arteriole

Glomeruli

Artery

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training
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Glomeruli Segmentation

Trained on 538 WSIs 
(7694 Glomeruli, 10838 Arteriolie, 1658 Artery)
Tested on 128 WSIs 
(2200 Glomeruli, 3099 Arteriolie, 532 Artery)

32732 tiles extracted for the task

Results: (F1-scores):
Glomeruli: 0.86
Arteriolie: 0.36
Artery: 0.66

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training

Huy Q. Vo et al. , 2022



27

Auto-Segmentation Model

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training

AMR NoAMR Total

PAS 543 517 1060

H_E 380 373 753

Total 923 890 1813

WSI Count Info:

AMR NoAMR Total

PAS 8560 7375 15935

Average 15.76 14.26 15.03

Std 12.38 9.88 11.25

H_E 6011 5094 11105

Average 15.81 13.65 14.74

Std 11.44 10.03 10.81

Total 14571 12469 27040

Average 15.78 14.01 14.91

Std 11.99 9.94 11.07

Glomeruli Count Info:
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Feature Extraction

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training

• Virchow: A Foundation Model 

for Computational Pathology

• Architecture & Training:
• Model: Vision Transformer

Huge (ViT-H/14) with 632
million parameters Training.
Data: 1.5 million H&E stained
whole-slide images from
~100,000 patients

Huy Q. Vo et al. ,Nature Medicine, 2024
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▪ For training a Classification Model in total 144 
combination of hyperparameters were tried, including:

▪ Patching method (Resized, aggregated patches)

▪ Case Aggregation method (Majority Voting, Any Positive)

▪ Classifier method (Average Pooling, Weighted Pooling, 
Max Pooling, Attention-based MIL, Attention 
Aggregation)

▪ Dropout (0.25, 0.5)

▪ Learning Rate (0.001, 0.005, 0.0001)

▪ Random state (10, 20, 42)

Model Training

WSI Acquisition Glomeruli Segmentation Feature Extraction Model Training

Features
X₁, X₂, X₃, ..., Xₙ

→

MODEL

Classifier

→

Classes
AMR   vs.   NoAMR
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Results

▪ Best result was achieved so far with this configurations:
- WSI F1-Score: 0.7237 ± 0.0516

- Case F1-Score: 0.7195 ± 0.0474

- WSI Accuracy: 0.6980 ± 0.0680

- Case Accuracy: 0.6806 ± 0.0574

• Patching method: Aggregated Patches • Dropout: 0.25

• Case Aggregation method: Majority Voting • Learning Rate: 0.001

• Classifier method: Weighted Pooling • Random state: 20
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To Sum Up

Our ultimate objective is to leverage cutting-edge 
Deep Learning techniques, harnessing our robust 

dataset to achieve highly accurate and reliable outcomes in 
AMR diagnosis
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